
Database Recovery techniques

Database systems, like any other computer system, are subject to failures but the

data stored in it must be available as and when required. When a database fails it

must possess the facilities for fast recovery. It must also have atomicity i.e. either

transactions are completed successfully and committed (the effect is recorded

permanently in the database) or the transaction should have no effect on the

database.

There are both automatic and non-automatic ways for both, backing up of data

and recovery from any failure situations. The techniques used to recover the lost

data due to system crash, transaction errors, viruses, catastrophic failure,

incorrect commands execution etc. are database recovery techniques. So to

prevent data loss recovery techniques based on deferred update and immediate

update or backing up data can be used.

Recovery techniques are heavily dependent upon the existence of a special file

known as a system log. It contains information about the start and end of each

transaction and any updates which occur in the transaction.

The log keeps track of all transaction operations that affect the values of database

items. This information is needed to recover from transaction failure.

 The log is kept on disk start_transaction(T): This log entry records that

transaction T starts the execution.

 read_item(T, X): This log entry records that transaction T reads the value of

database item X.

 write_item(T, X, old_value, new_value): This log entry records that transaction

T changes the value of the database item X from old_value to new_value. The

old value is sometimes known as a before an image of X, and the new value is

known as an afterimage of X.

 commit(T): This log entry records that transaction T has completed all accesses

to the database successfully and its effect can be committed (recorded

permanently) to the database.

 abort(T): This records that transaction T has been aborted.

 checkpoint: Checkpoint is a mechanism where all the previous logs are

removed from the system and stored permanently in a storage disk. Checkpoint

declares a point before which the DBMS was in consistent state, and all the

transactions were committed.

A transaction T reaches its commit point when all its operations that access the

database have been executed successfully i.e. the transaction has reached the

point at which it will not abort (terminate without completing). Once committed,

the transaction is permanently recorded in the database. Commitment always

involves writing a commit entry to the log and writing the log to disk. At the time

of a system crash, item is searched back in the log for all transactions T that have

written a start_transaction(T) entry into the log but have not written a commit(T)

entry yet; these transactions may have to be rolled back to undo their effect on the

database during the recovery process

 Undoing – If a transaction crashes, then the recovery manager may undo

transactions i.e. reverse the operations of a transaction. This involves

examining a transaction for the log entry write_item(T, x, old_value,

new_value) and setting the value of item x in the database to old-value.There

are two major techniques for recovery from non-catastrophic transaction

failures: deferred updates and immediate updates.

 Deferred update – This technique does not physically update the database on disk

until a transaction has reached its commit point. Before reaching commit, all

transaction updates are recorded in the local transaction workspace. If a

transaction fails before reaching its commit point, it will not have changed the

database in any way so UNDO is not needed. It may be necessary to REDO the

effect of the operations that are recorded in the local transaction workspace,

because their effect may not yet have been written in the database. Hence, a

deferred update is also known as the No-undo/redo algorithm

 Immediate update – In the immediate update, the database may be updated by

some operations of a transaction before the transaction reaches its commit

point. However, these operations are recorded in a log on disk before they are

applied to the database, making recovery still possible. If a transaction fails to

reach its commit point, the effect of its operation must be undone i.e. the

transaction must be rolled back hence we require both undo and redo. This

technique is known as undo/redo algorithm.

 Caching/Buffering – In this one or more disk pages that include data items to

be updated are cached into main memory buffers and then updated in

memory before being written back to disk. A collection of in-memory

buffers called the DBMS cache is kept under control of DBMS for holding

these buffers. A directory is used to keep track of which database items are

in the buffer. A dirty bit is associated with each buffer, which is 0 if the

buffer is not modified else 1 if modified.

 Shadow paging – It provides atomicity and durability. A directory with n

entries is constructed, where the ith entry points to the ith database page on

the link. When a transaction began executing the current directory is copied

into a shadow directory. When a page is to be modified, a shadow page is

allocated in which changes are made and when it is ready to become

durable, all pages that refer to original are updated to refer new

replacement page.

Some of the backup techniques are as follows :

 Full database backup – In this full database including data and database, Meta

information needed to restore the whole database, including full-text catalogs

are backed up in a predefined time series.

 Differential backup – It stores only the data changes that have occurred since last

full database backup. When same data has changed many times since last full

database backup, a differential backup stores the most recent version of

changed data. For this first, we need to restore a full database backup.

 Transaction log backup – In this, all events that have occurred in the database, like

a record of every single statement executed is backed up. It is the backup of

transaction log entries and contains all transaction that had happened to the

database. Through this, the database can be recovered to a specific point in

time. It is even possible to perform a backup from a transaction log if the data

files are destroyed and not even a single committed transaction is lost.

